The Energy Frontier

Beate Heinemann

The Standard Model

- Matter is made out of fermions:
 - quarks and leptons
 - 3 generations
- Forces are carried by Bosons:
 - Electroweak: γ,W,Z
 - Strong: gluons
- Higgs boson:
 - Manifestation of scalar field that breaks the electroweak symmetry
 - Gives mass to particles
 - Not observed yet
 - Observation critical for understanding electroweak symmetry breaking

The Higgs boson: what do we know?

- Precision measurements of
 - $M_W = 80.398 \pm 0.025 \text{ GeV/c}^2$
 - $M_{top} = 170.9 \pm 1.8 \text{ GeV/c}^2$
- Prediction of higgs boson mass within SM due to loop corrections
 - Most likely value: 76⁺³³-26 GeV
- Direct limit (LEP): m_h>114.4 GeV

Recent W and Top Mass Results

- SM excluded at 68% CL
 - Perfectly allowed at 95% though

Problems of the Standard Model

$$m_{H}^{2} \approx (200 \text{ GeV})^{2} = m_{H}^{2 \text{ tree}} + \delta m_{H}^{2 \text{ top}} + \delta m_{H}^{2 \text{ gauge}} + \delta m_{H}^{2 \text{ higgs}}$$

- Large fine-tuning required:
 - $m_H << m_{Pl}$
- Accounts for just 4% of the Universe
 - No dark matter candidate
 - Cosmological constant problem
- No prediction for
 - fundamental constants, unification of forces, number of generations, mass values and hierarchy of SM particles, anything to do with gravity

What's Nice about SUSY?

- Radiative corrections to Higgs acquire SUSY corrections:
 - No/little fine-tuning required
 - Particles masses must be near EWK scale
- Unification of forces possible
- Dark matter candidate exists:
 - lightest neutral gaugino
- Changes relationship between m_W, m_{top} and m_H:
 - Also consistent with precision measurements of M_W and m_{top}

Tevatron Run II

CDF and DØ Detectors

- LBNL has made major contributions to these detectors
 - central to building and operating the CDF silicon detectors for more than 15 years
 - First ever silicon detector at hadron collider
 - crucial contributions to DØ calorimeter and first vertex chamber
- LBNL played a major role in physics exploitation

Status of the Energy Frontier

- Higgs boson:
 - LEP: m_H>114 GeV
 - Tevatron closing in
- SUSY particles:
 - m(\widetilde{I} , $\widetilde{\chi}^{\pm}_{1}$)>104 GeV
 - M(LSP)>50 GeV
 - M(g)>310 GeV
 - M(q)>400 GeV
- **Z**':
 - M>900 GeV (SM Z')
- Extra dimensions:
 - M_D>900 GeV

The Large Hadron Collider (LHC)

LHC and ATLAS status

ATLAS Pixel Detector

Huge LBNL contributions to both Pixel and SCT detectors 12

LHC and ATLAS Schedule

- LHC:
 - End of '07: a few collisions at √s=900 GeV
 - Summer '08: first collisions at 14 TeV
- ATLAS:
 - Pixel installation planned for early June '07
 - Final schedule may still change
 - Close detector in August '07
 - Take cosmics when there is no beam
 - Take data during 900 GeV run
 - On schedule to be ready for 14 TeV run

Physics Opportunities at LHC

Cross Sections of Physics Processes (pb)

	Tevatron	LHC	Ratio
W [±] (80 GeV)	2600	20000	10
н (2x172 GeV)	7	800	100
gg->H (120 GeV)	1	40	40
$\widetilde{\chi}^{+}_{1}\widetilde{\chi}^{2}_{0}$ (2x150 GeV)	0.1	1	10
qq (2x400 GeV)	0.05	60	1000
gg (2x400 GeV)	0.005	100	20000
Z' (1 TeV)	0.1	30	300

Amazing increase for strongly interacting heavy particles

Opportunity!

Jet Cross Section

SUSY Discovery at the LHC

- May be found relatively quickly!
- Jets+missing E_T analysis most promising:
 - Will improve upon Tevatron sensitivity with only 100 pb⁻¹ of data!
- Then the fun really starts:
 - SUSY spectroscopy
 - Sleptons and gauginos are accessible in cascade decays

This signal is rather robust but we need to keep eyes open for other signals

Z Discovery Reach

- $Z' \rightarrow e^+e^-$ with $m_{Z'}=1$ TeV/ c^2 and SM couplings:
 - Tevatron (evaluated for P5 review):
 - 5σ discovery with ∫Ldt=1.5 fb⁻¹
 - LHC (F. Gianotti, M. Mangano, hep-ph/0504221):
 - 5σ discovery with ∫Ldt=70 pb-1

LHC projections (from F. Gianotti, M. Mangano)

Z' → ee, SSM

Mass	Expected events for 10 fb ⁻¹	IL dt needed for discovery	
	(after all cuts)	(corresponds to 10 observed evts)	
1 TeV	~ 1600	~ 70 pb ⁻¹	
1.5 TeV	~ 300	~ 300 pb ⁻¹	
2 TeV	~ 70	~ 1.5 fb ⁻¹	

"Easy" very early LHC physics (also for more realistic Z' scenarios)

Higgs Boson Discovery Prospects

- Tevatron:
 - might see a 3σ evidence with full luminosity (2009/2010?)
- LHC:
 - cover full mass range with 5σ significance with 5 fb⁻¹ (2009/2010?)
 - Could be earlier if m_H≥2*m_W
 - At low mass sensitive to three production and decay modes:
 - $gg \rightarrow H \rightarrow \gamma\gamma$, WW $\rightarrow H \rightarrow \tau\tau$, ttH \rightarrow ttbb

Suppose we find Higgs and SUSY at LHC...

- LHC sparticle mass reconstruction limited ~ few GeV uncertainty
 - underconstrained kinematics
- Is it really SUSY ? and Higgs?
 - Spin-reconstruction difficult or impossible at LHC
- Is new model valid to Planck or at least GUT scale ?
 - need high precision for large extrapolations to GUT scale
- Does the SUSY LSP account for all Cold Dark Matter?
 - Need to know many annihilation cross sections to calculate relic density

International Linear Collider

- ILC: 40km long e+e- collider with √s=0.5-1 TeV
 - Advantage compared to LHC: initial state precisely known
- See talks by M. Venturini, M. Battaglia

ILC Physics goes beyond LHC

- ILC required to really understand the big questions
 - High precision measurements require excellent precision detectors
 - LBNL focus on silicon pixel sensors for vertexing and TPC for 3D tracking

Conclusions

- The origin and nature of electroweak symmetry breaking are not understood
 - Its understanding is likely to involve the existence of new particles at the TeV scale
- LHC will probe the TeV scale and take over the energy frontier from the Tevatron next year
 - ATLAS detector is on schedule
 - The physics opportunities are amazing
 - particularly for very massive particles
 - LBNL group is focused on building ATLAS and setting up software to get ready for exploitation of LHC data
 - builds on major contributions to ATLAS (detector and software)
 and extensive hadron-collider expertise
- ILC is needed if new physics exists at TeV scale
 - Provides a chance of understanding physics at GUT scale

Backup Slides